1,683 research outputs found

    Geometry modeling and multi-block grid generation for turbomachinery configurations

    Get PDF
    An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation

    Groundwater externalities of surface irrigation transfers under National River Linking Project: Polavaram – Vijayawada link

    Get PDF
    River basin managementRiver basin developmentDevelopment projectsWater transferIrrigation canalsGroundwater irrigationTube well irrigationRiceSurface irrigationCrop managementSoil salinityWaterlogging

    Role of isospin physics in supernova matter and neutron stars

    Full text link
    We investigate the liquid-gas phase transition of hot protoneutron stars shortly after their birth following supernova explosion and the composition and structure of hyperon-rich (proto)neutron stars within a relativistic mean-field model where the nuclear symmetry energy has been constrained from the measured neutron skin thickness of finite nuclei. Light clusters are abundantly formed with increasing temperature well inside the neutrino-sphere for an uniform supernova matter. Liquid-gas phase transition is found to suppress the cluster yield within the coexistence phase as well as decrease considerably the neutron-proton asymmetry over a wide density range. We find symmetry energy has a modest effect on the boundaries and the critical temperature for the liquid-gas phase transition, and the composition depends more sensitively on the number of trapped neutrinos and temperature of the protoneutron star. The influence of hyperons in the dense interior of stars makes the overall equation of state soft. However, neutrino trapping distinctly delays the appearance of hyperons due to abundance of electrons. We also find that a softer symmetry energy further makes the onset of hyperon less favorable. The resulting structures of the (proto)neutron stars with hyperons and with liquid-gas phase transition are discussed.Comment: 11 pages, 7 figures, RevTe

    The Diversity of Theoretical Classifications: Scholarly Treatment of the Monarchic Political Formula in the Analysis of Modernization Efforts in Pahlavi Iran

    Get PDF
    The study of the Iranian monarchy under Mohammad Reza Shah from 1941 to 1979 is assumed to rely on the monarchic political formula as a determining factor for policy analysis. However, the monarchic political formula is not consistently or universally understood as an influential factor in social and political modernization efforts under the Shah. In fact, scholars at times apply their own definitions of the term monarchy inconsistently, potentially causing confusion among students of Iranian history and international relations. In this study, four influential theorists\u27 work is examined in relation to their understanding of the monarchic political formula during Mohammad Reza Shah\u27s modernization efforts in Iran. Their treatments of the Shah\u27s modernization efforts are studied in conjunction with their definitions of the term monarchy , providing the foundation for critical analysis of scholarly treatment of this important topic in political science
    • …
    corecore